20 Agricultural Research/December 2003

It's a familiar scene in the country—a tractor chugging its way across a field, mowing down swath after swath of green alfalfa. Many farmers store and ferment these alfalfa clippings in silos. By doing so, they turn the forage into silage, the cow's equivalent of sauerkraut.

As a forage crop, alfalfa has many benefits. It fixes nitrogen in the soil—meaning there's no need to add nitrogen fertilizer—and it's a good scavenger of excess soil nitrate left by overfertilized row crops. And because it's high in protein, it's great for livestock, such as dairy cattle. Unfortunately, when alfalfa is processed into silage, up to 85 percent of its protein breaks down into nonprotein nitrogen (NPN) through a process known as proteolysis. Cows use NPN much less efficiently than protein.

Now, researchers at ARS's U.S. Dairy Forage Research Center in Madison, Wisconsin, and ARS's Plant Science Research Unit in St. Paul, Minnesota, have found an environmentally friendly way to reduce protein degradation in ensiled crops such as alfalfa. ARS has filed a patent application on the discovery, which could save farmers more than $100 million per year.

“Right now, no practical techniques are available to farmers who want to reduce protein breakdown in alfalfa silage,” says plant physiologist Ronald D. Hatfield, of the Madison center. Research has shown that applying formic acid or using heat treatments can reduce protein degradation by 12 to 28 percent, but these methods are either too caustic or too expensive for farmers to use profitably. Formic acid, for example, must be handled with care and can be hard on some equipment.

But Hatfield and two other scientists at the center—agricultural engineer Richard E. Muck and molecular biologist Michael L. Sullivan—along with Deborah A. Samac, a plant pathologist in the St. Paul unit, have discovered a way to reduce protein loss by using ingredients extracted from potato skins and red clover. Research leading up to their invention began more than 10 years ago.

Clues in the Clover

In the early 1990s, Muck and Hatfield were helping Beth Jones, a graduate student at the University of Wisconsin, research red clover and alfalfa silage. They found that although red clover and alfalfa have similar protein levels, the protein in red clover does not degrade during ensiling nearly as dramatically as the protein in alfalfa. In fact, red clover silage preserves 65 to 80 percent of its protein as true protein.

The researchers wanted to know why red clover, which outwardly seems so similar to alfalfa, made such excellent silage. “We looked to see whether there were different types of proteins in the two plants or differences in their protease activity,” says Muck. (Proteases are the enzymes responsible for breaking down proteins.) They didn’t find anything at first.

But later, a clue emerged. Alfalfa clippings would remain green for a while after being cut, but red clover clippings would turn brown right away. Further studies revealed that red clover contains large amounts of polyphenol oxidase (PPO), the same enzyme that turns cut surfaces brown in apples, bananas, potatoes, and many other fruits and vegetables. Alfalfa has insignificant amounts of PPO.

For PPO to cause the browning reaction, it needs something to act on—a substrate—as well as exposure to oxygen. The substrates of choice for PPO are O-diphenols. They include compounds such as caffeic acid and related compounds, or conjugates, such as chlorogenic acid. In addition to containing high levels of PPO, red clover contains high amounts of caffeic acid and its conjugates. Alfalfa doesn’t.

Hatfield explains how red clover safeguards its protein. “When the clover...
is chopped up, its cells release PPO,” he
says. “Once the PPO is exposed to
oxygen, it reacts with the plant’s caffeic
acid and forms a very reactive molecule
known as an o-quinone. Quinones bind
to the proteases and keep them from degrading red clover’s
protein.”

Since making these discoveries,
Sullivan has been able to extract the PPO
gene from red clover, and Samac has
inserted it into an alfalfa plant. They
recently conducted an experiment in
which they chopped some transgenic
alfalfa plants into 2-centimeter pieces,
treated them with a bacterial inoculant,
and let them sit for 2 weeks. Bacterial
inoculants are the principal silage
additives in the United States; they
ensure fast and efficient fermentation in
the silo.

The alfalfa plants treated with caffeic
acid had 15 percent less protein degra-
dation than untreated plants. The sci-
entists believe they can preserve even
more alfalfa protein if they improve their
processing technique and grind the plant
into smaller pieces.

A Potato Mash Alternative

Caffeic acid is present in high con-
centrations in a variety of fruits and
vegetables, most notably potato skins—
a common agricultural waste product.
The scientists are currently working with
different potato-processing plants to
determine how easy it would be to extract
large amounts of caffeic acid from
leftover skins.

They are also looking at ways to in-
sert the PPO gene into a bacterial
inoculant. Such inoculants would excrete
the protective PPO enzyme and enhance
fermentation of the silage. Farmers could
apply the inoculant and the potato-
derived caffeic acid to their alfalfa crop.
In this way, they could achieve results
similar to the ones reached with
transgenic alfalfa without having to grow a
transgenic plant.

This technology should work on
other ensiled crops as well, including
corn and rye grass.—By Amy Spillman,
formerly with ARS.

This work is part of Food Animal
Production (#101) and Rangeland,
Pasture, and Forages (#205), two ARS
National Programs described on the
gov.

Ronald D. Hatfield, Richard E. Muck,
and Michael L. Sullivan are with the
USDA-ARS U.S. Dairy Forage Re-
search Center, 1925 Linden Dr., West,
Madison, WI 53706-1108; phone (608)
264-5358 [Hatfield], (608) 264-5245
[Muck], (608) 264-5397 [Sullivan], fax
(608) 264-5147, e-mail rdhatfie@wisc.
edu, remuck@wisc.edu, mlsulliv@wisc.
edu.

Deborah A. Samac is in the USDA-
ARS Plant Science Research Unit, 317
Christensen Laboratory, 1515 Gortner
Ave., St. Paul, MN 55108; (612) 625-
1243, fax (651) 649-5058, e-mail
dasamac@tc.umn.edu.

In hopes of identifying possible ways to
improve alfalfa silage, plant physiologist
Ronald Hatfield harvests red clover from
the greenhouse to study why it undergoes
limited protein degradation in the silo.

While a front-end loader works to fill this bunker silo, agricultural engineer Richard Muck
takes forage samples that will be analyzed later for nutritive value and moisture content.